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Abstract. We study the rare B decay B→K∗�+�− using soft-collinear effective theory (SCET). At leading
power in 1/mb, a factorization formula is obtained valid to all orders in αs. For phenomenological ap-
plication, we calculate the decay amplitude including order αs corrections, and resum the logarithms by
evolving the matching coefficients from the hard scale O(mb) down to the scale

√
mbΛh. The branching

ratio for B→K∗�+�− is uncertain due to the imprecise knowledge of the soft form factors ζ⊥(q
2) and

ζ‖(q
2). Constraining the soft form factor ζ⊥(q

2 = 0) from data on B→K∗γ yields ζ⊥(q
2 = 0) = 0.32±

0.02. Using this input, together with the light-cone sum rules to determine the q2-dependence of ζ⊥(q
2)

and the other soft form factor ζ‖(q
2), we estimate the partially integrated branching ratio in the range

1GeV2 ≤ q2 ≤ 7 GeV2 to be (2.92+0.67−0.61)×10
−7. We discuss how to reduce the form factor related uncer-

tainty by combining data onB→ ρ(→ ππ)�ν� andB→K
∗(→Kπ)�+�−. The forward-backward asymmetry

is less sensitive to the input parameters. In particular, for the zero-point of the forward-backward asym-

metry in the standard model, we get q20 = (4.07
+0.16
−0.13)GeV

2. The scale dependence of q20 is discussed in
detail.

PACS. 13.25.Hw; 12.39.St; 12.38.Bx

1 Introduction

The electroweak penguin decay B → K∗�+�− is loop-
suppressed in the standard model (SM). It may therefore
provide a rigorous test of the SM and also put strong con-
straints on the flavor physics beyond the SM.
Though the inclusive decay B→Xs�+�− is better un-

derstood theoretically using the operator product expan-
sion, and the first direct experimental measurements of
the dilepton invariant mass spectrum andmX -distribution
are already at hand [1, 2], being an inclusive process, it
is extremely difficult to be measured in a hadron ma-
chine, such as the LHC, which is the only collider, ex-
cept for a Super-B factory, that could provide enough
luminosity for the precise study of the decay distribu-
tions of such a rare process. In contrast, for the exclu-
sive decay B → K∗�+�−, the difficulty lies in the im-
precise knowledge of the underlying hadron dynamics.
Experimentally, the BaBar [3] and Belle [4] Collabora-
tions have observed this rare decay with the branching
ratios
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Br(B→K∗�+�−)

=

{
(7.8+1.9−1.7±1.2)×10

−7 (BaBar) ,

(16.5+2.3−2.2±0.9±0.4)×10
−7 (Belle) .

(1)

We note that the Belle measurements are approximately
a factor 2 higher than the corresponding BaBar meas-
urements. In addition, Belle has published the meas-
urements [4, 5] of the so-called forward–backward asym-
metry (FBA) [6]. In particular, the best-fit results by
Belle for the Wilson coefficient ratios for a negative value
of A7,

A9

A7
=−15.3+3.4−4.8±1.1 ,

A10

A7
= 10.3+5.2−3.5±1.8 , (2)

are consistent with the SM values A9/A7 � −13.7 and
A10/A7 � +14.9, evaluated in the NLO approximation
(see Table 1). With more data accumulated at the cur-
rent B factories, and especially the huge data that will be
produced at the LHC, it is foreseeable that the dilepton in-
variant mass spectrum and the FBA in this channel will
be measured precisely in several years from now, allowing
a few % measurements of the Wilson coefficient ratios and
the sign of A7.
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Table 1. The leading-logarithmic (LL) and next-to-leading-logarithmic
(NLL) Wilson coefficients evaluated at the scale mb = 4.8 GeV. For C9,10,
they are also given in the NNLL order

LL NLL LL NLL NNLL

C̄1 −0.2501 −0.1459 C̄6 −0.0316 −0.0388

C̄2 1.1082 1.0561 Ceff7 −0.3145 −0.3054
C̄3 0.0112 0.0116 Ceff8 −0.1491 −0.1678
C̄4 −0.0257 −0.0337 C9 1.9919 4.1777 4.2120
C̄5 0.0075 0.0097 C10 0 −4.5415 −4.1958

Theoretically, the exclusive decay B → K∗�+�− has
been studied in a number of papers; see for example [7–12].
From the viewpoint of hadron dynamics, the application of
the QCD factorization approach [13] to this channel [14]
deserves special mention, as we shall be comparing our
phenomenological analysis with the results obtained in this
paper. The emergence of an effective theory, called soft-
collinear effective theory (SCET) [15–19], provides a sys-
tematic and rigorous way to deal with the perturbative
strong interaction effects in B decays in the heavy-quark
expansion. A lot of theoretical work has been done in
SCET related to the so-called heavy-to-light transitions
in B decays; in particular, a demonstration of the soft-
collinear factorization [20–23], a complete catalogue of the
various 2-body and 3-body current operators [19, 22, 24],
and the extension of SCET to two effective theories SCETI
and SCETII, with the two-step matching QCD → SCETI
→ SCETII [25]. Among various phenomenological appli-
cations reported in the literature, SCET has been used
to prove the factorization of radiative B→ V γ decays at
leading power in 1/mb and to all orders in αs [26, 27]. Like-
wise, SCET, in combination with the heavy-hadron chi-
ral perturbation theory, has also been used to study the
forward–backward asymmetry in the non-resonant decay
B→Kπ�+�− in a certain kinematic region [28]. In this pa-
per, our aim is to use SCET in the decay B→K∗�+�−.
Due to the similarity between B→K∗γ and B→K∗�+�−

decays, our approach is quite similar to the earlier SCET-
based studies [26, 27]; in particular to the one in [26]. More-
over, an analysis of the exclusive radiative and semilep-
tonic decays B →K∗γ and B →K∗�+�− in SCET can
be combined with data to reduce the uncertainties in the
input parameters. In particular, as we show here, the loca-
tion of the forward–backward asymmetry in B→K∗�+�−

can be predicted more precisely than is the case in the ex-
isting literature.
It is well known that, when q2, the momentum squared

of the lepton pair, is comparable to M2J/ψ, the reso-
nant charmonium contributions become very import-
ant, for which there is no model-independent treatment
yet. Likewise, for higher q2-values, higher ψ-resonances
(ψ′, ψ′′, . . . ) have to be included. Thus, in the following we
will restrict ourselves to the region 1 GeV2 < q2 < 7 GeV2,
which is dominated by the short-distance contribution.
Note that the lower cut-off 1 GeV2 is taken here because, as
we shall see later, when q2 is very small, say q2 ∼O(Λ2QCD),
the factorization of the annihilation topology breaks

down. In this kinematic region, a factorization formula for
the decay amplitude ofB→K∗�+�−, which holds toO(αs)
at the leading power in 1/mb, has been derived in [14]
using the QCD factorization approach. We shall derive the
factorization of the decay amplitude of B→K∗�+�− in
SCET, which formally coincides with the formula obtained
by Beneke et al. [14] but is valid to all orders of αs:

〈K∗a�
+�−|Heff|B〉= T

I
a(q
2)ζa(q

2)

+
∑
±

∫ ∞
0

dω

ω
φB±(ω)

∫ 1
0

duφaK∗(u)T
II
a,±(ω, u, q

2) , (3)

where a=‖,⊥ denotes the polarization of the K∗ meson.
The functions T I and T II are perturbatively calculable.
ζa(q

2) are the soft form factors defined in SCET, while
φB± and φ

a
K∗ are the light-cone distribution amplitudes

(LCDAs) for the B and K∗ mesons, respectively. Com-
pared to the earlier results of [14], obtained in the QCD
factorization approach, the main phenomenological im-
provement is that for the hard scattering function T II the
perturbative logarithms are summed from the hard scale
µb ∼O(mb) down to the intermediate scale µ� ≡

√
µbΛh,

where Λh represents a typical hadronic scale. Note also
that the definitions of the soft form factors ζa(q

2) for our
SCET currents, defined below in Sect. 2, are different from
those of [14], a point to which we will return later in Sect. 3.
Hence, the explicit expressions for T I derived here and
in [14] are also different.
This paper is organized as follows. In Sect. 2, we briefly

review the basic ideas and notation of SCET. We then list
the relevant effective operators in SCET and do the explicit
matching calculations from QCD to SCETI (Sect. 2.1) and
from SCETI to SCETII (Sect. 2.2). The matrix elements
of the effective SCET operators are given in Sect. 2.3. At
the end of this section, the logarithmic resummation in
SCETI is discussed. In Sect. 3, we consider some phe-
nomenological aspects of the B→K∗�+�− decay. We first
specify the input parameters, especially the soft form fac-
tors ζ⊥,‖(q

2) (Sect. 3.1), which are the cause of the largest
theoretical uncertainty. We use the q2-dependence of the
related QCD form factors in the LC-QCD sum rule ap-
proach, but we fix the normalization of these soft form
factors using constraints from data on the exclusive de-
cays B→K∗γ. In Sect. 3.2, we work out numerically the
evolution of the B-type SCETI matching coefficients, de-
fined earlier in Sect. 2. We then give the dilepton invari-
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ant mass spectrum and the forward–backward asymme-
try in the decay B→K∗�+�− and compare the integrated
branching ratios with the measurements from BaBar and
Belle (Sect. 3.3). We end with a summary of our results in
Sect. 4 and suggestions for future measurements to reduce
the model dependence due to the form factors and other
input parameters.

2 SCET analysis of B→K��+��

For the b→ s transitions, the weak effective Hamiltonian
can be written as

Heff =−
GF√
2
V ∗tsVtb

10∑
i=1

Ci(µ)Qi(µ) , (4)

where we have neglected the contribution proportional to
V ∗usVub in the penguin (loop) amplitudes, which is doubly
Cabibbo-suppressed, and we have used the unitarity of the
CKM matrix to factorize the overall CKM-matrix elem-
ent dependence. We use the operator basis as introduced
in [14, 30]:

Q1 = (s̄ T
A c)V−A(c̄ T

A b)V−A ,

Q2 = (s̄c)V−A(c̄b)V−A ,

Q3 = 2 (s̄b)V−A
∑
q

(q̄γµq) ,

Q4 = 2 (s̄ T
A b)V−A

∑
q

(q̄γµTA q) ,

Q5 = 2 s̄γµγνγρ(1−γ5)b
∑
q

(q̄γµγνγρq) ,

Q6 = 2 s̄γµγνγρ(1−γ5)T
A b
∑
q

(q̄γµγνγρTA q) ,

Q7 =−
gemmb

8π2
s̄σµν(1+γ5)bFµν ,

Q8 =−
gsmb

8π2
s̄σµν(1+γ5)T

A b GAµν ,

Q9 =
αem

2π
(s̄b)V−A(�̄γ

µ�) ,

Q10 =
αem

2π
(s̄b)V−A(�̄γ

µγ5�) , (5)

where TA is the SU(3) color matrix, αem = g
2
em/4π is the

fine-structure constant, and mb(µ) is the current mass of
the b-quark in the MS scheme at the scale µ.
Restricting ourselves to the kinematic region 1 GeV2 <

q2 < 7 GeV2, the light K∗ meson moves fast, with a large
momentum of the order ofmB/2, which thus can be viewed
approximately as a collinear particle. For convenience, let
us assume that the K∗ meson is moving in the direction of
the light-like reference vector n; then its momentum can be
decomposed as pµ = n̄ · pnµ/2+ pµ⊥+n · pn̄

µ/2, where n̄µ

is another light-like reference vector satisfying n · n̄= 2. In
this light-cone frame, the collinear momentum ofK∗ is ex-
pressed as

p= (n ·p, n̄ ·p, p⊥)∼ (λ
2, 1, λ)mb , (6)

with λ∼Λ/mb
 1. In addition to this collinear mode, the
soft- and hard-collinear modes, with momenta scaling as
(λ, λ, λ)mb and (λ, 1,

√
λ)mb, respectively, are also neces-

sary to correctly reproduce the infrared behavior of full
QCD.
SCET introduces fields for every momentummode, and

we will encounter the following quark and gluon fields:

ξc ∼ λ , A
µ
c ∼ (λ

2, 1, λ) , ξhc, ξhc ∼ λ
1/2 ,

Aµhc ∼ (λ, 1, λ
1/2) , qs ∼ λ

3/2 , Aµs ∼ (λ, λ, λ) ,

h∼ λ3/2 . (7)

In the above, the symbol Aµ stands for the gluon field,
h represents a heavy-quark field, the symbols ξ and q
stand for the light-quark fields, and the subscripts c, s,hc
stand for collinear, soft- and hard-collinear modes, respec-
tively. Note that the momentum q of the lepton pair is
taken as a hard-collinear momentum, since in this pa-
per we only consider the range 1 GeV2 < q2 < 7 GeV2.
That is why an extra hard-collinear field ξhc in the n̄-
direction is required later. As explained in detail in [26],
to construct the gauge invariant operators in SCET,
it is more convenient to introduce the building blocks,
given below, which are obtained by multiplying the fields
by the Wilson lines which run along the light-ray to
infinity:

Xc , A
µ
c , Xhc , Xhc , A

µ
hc , Qs , A

µ
s , Hs , Qs̄ , Hs̄ .

(8)

For example, the field Xhc is defined as

Xhc(x) =W
†
hc(x)ξhc(x), with

Whc(x) = P exp

(
ig

∫ 0
−∞
dsn̄ ·Ahc(x+ sn̄)

)
, (9)

where Whc(x) is the hard-collinear Wilson line. The nota-
tions Qs̄ and Hs̄ are used when the associated soft Wilson
lines are in the n̄-direction. For the definitions of the other
fields and more technical details about SCET, we refer the
reader to [26] and references therein.
Since SCET contains two kinds of collinear fields, i.e.

hard-collinear and collinear fields, normally an interme-
diate effective theory, called SCETI, is introduced which
contains only soft- and hard-collinear fields, while the fi-
nal effective theory, called SCETII, contains only soft and
collinear fields. We will then do a two-step matching from
QCD→ SCETI→ SCETII.

2.1 QCD to SCETI matching

In SCETI, the K
∗ meson is taken as a hard-collinear par-

ticle and the relevant building blocks areXhc, Xhc,A
µ
hc and

h. The velocity of the B meson is defined as v = PB/mB.
The matching from QCD to SCETI at leading power may
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be expressed as

Heff→−
GF√
2
V ∗tsVtb

(
4∑
i=1

∫
ds C̃Ai (s)J

A
i (s)

+
4∑
j=1

∫
ds

∫
dr C̃Bj (s, r)J

B
j (s, r)

+

∫
ds

∫
dr

∫
dt C̃C(s, r, t)JC(s, r, t)

)
,

(10)

where C̃
(A,B)
i and C̃C are Wilson coefficients in position

space. The relevant SCETI operators for the B→K∗�+�−

decay are constructed by using the building blocks men-
tioned above [26]:

JA1 = X̄hc(sn̄)(1+γ5)γ
µ
⊥h(0) �̄γµ� ,

JA2 = X̄hc(sn̄)(1+γ5)
nµ

n ·v
h(0) �̄γµ� ,

JA3 = X̄hc(sn̄)(1+γ5)γ
µ
⊥h(0) �̄γµγ5� ,

JA4 = X̄hc(sn̄)(1+γ5)
nµ

n ·v
h(0) �̄γµγ5� ,

JB1 = X̄hc(sn̄)(1+γ5)γ
µ
⊥ /Ahc⊥(rn̄)h(0) �̄γµ� ,

JB2 = X̄hc(sn̄)(1+γ5) /Ahc⊥(rn̄)
nµ

n ·v
h(0) �̄γµ� ,

JB3 = X̄hc(sn̄)(1+γ5)γ
µ
⊥ /Ahc⊥(rn̄)h(0) �̄γµγ5� ,

JB4 = X̄hc(sn̄)(1+γ5) /Ahc⊥(rn̄)
nµ

n ·v
h(0) �̄γµγ5� ,

JC = X̄hc(sn̄)(1+γ5)
/̄n

2
Xhc(rn̄) X̄hc(an)(1+γ5)

/n

2
h(0) ,

(11)

where the operators JAi and J
B
j represent the cases that

the lepton pair is emitted from the b→ s transition cur-
rents, while JC represents the diagrams in which the lepton
pair is emitted from the spectator quark of the B meson.
Except for the lepton pair, the operators JA,Bi have the

Fig. 1. O(αs) contributions to the matching of
Qi to A-type SCET currents. The crossed cir-
cles denote the possible locations from where the
virtual photon is emitted and then splits into
a lepton pair

same Dirac structures as those of the heavy-to-light tran-
sition currents in SCET, which were first derived in [16]
for JAi and in [24, 25] for J

B
j (see also [23, 31]). In this pa-

per we take the operator basis of [26, 31] which makes JBj
multiplicatively renormalized, but we have neglected the
operators which contain the Dirac structure /Ahc⊥γ

µ
⊥ and

which do not contribute to the exclusive B meson decays.
It is also clear that the structure �̄γµγ5� arises solely from
Q10 of the weak effective Hamiltonian.
Since in practice the matching calculations are done in

the momentum space, it is more convenient to define the
Wilson coefficients in the momentum space by the follow-
ing Fourier-transformations:

CAi (E) =

∫
ds eisn̄·P C̃Ai (s) ,

CBj (E, u) =

∫
ds

∫
dr ei(us+ūr)n̄·P C̃Bj (s, r) ,

CC(E, u) =

∫
ds

∫
dr

∫
da ei(us+ūr)n̄·P eian·qC̃C(s, r, a) ,

(12)

with E ≡ n ·vn̄ ·P/2 and ū= 1−u. To get the order αs cor-
rections to the decay amplitude, we need to calculate the
Wilson coefficients CAi to one-loop level and C

B
j and C

C

to tree level. In the following we will use ∆jC
(A,B,C)
i to de-

note the matching results from the weak effective operators
Qj to the SCET currents J

A,B,C
i . With this, the matching

coefficients from QCD→ SCETI can be written as

C
(A,B,C)
i =

10∑
j=1

∆jC
(A,B,C)
i (µQCD, µ) , (13)

where µQCD is the matching scale and µ is the renormaliza-
tion scale in SCETI.
Each operator of the weak effective Hamiltonian,

namely Q1−10, will contribute to C
A
i at order αs level, as

shown in Fig. 1. But due to the small Wilson coefficients
C3−6, it is numerically reasonable to neglect the contribu-
tions fromQ3−6. For the operatorsQ1,2 andQ8, the results
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can be easily derived from (11) and (25) of [32]:

∆1,2C
A
1 (µQCD) =−

αem

2π

αs(µQCD)

4π

×

[
1

ŝ

(
2F
(7)
2 + ŝF

(9)
2

)
C̄2+2

(
F
(9)
1 +F

(9)
2 /6

)
C̄1

]
,

∆1,2C
A
2 (µQCD) =−

αem

2π

αs(µQCD)

4π

×
[(
2F
(7)
2 +F

(9)
2

)
C̄2+2

(
F
(9)
1 +F

(9)
2 /6

)
C̄1

]
,

∆8C
A
1 (µQCD) =

−
αem

2π

αs(µQCD)

4π

mb(µQCD)

mb

[
2

ŝ
F
(7)
8 +F

(9)
8

]
Ceff8 ,

∆8C
A
2 (µQCD) =

−
αem

2π

αs(µQCD)

4π

mb(µQCD)

mb

[
2F
(7)
8 +F

(9)
8

]
Ceff8 , (14)

where ŝ≡ q2/m2b , and mb is the pole mass of the b-quark.
The current massmb is related to the pole mass at next-to-
leading order by

mb(µ) =mb

[
1+
αsCF

4π

(
3 ln
m2b
µ2
−4

)]
, (15)

where CF = 4/3. The functions F
(7,9)
1,2,8 are given in a mixed

analytic and numerical form in [32]. Following the con-
vention of [14], we also use the “barred” coefficients C̄i
(i= 1, . . . , 6) here which are the linear combinations of the
Wilson coefficients Ci of the weak effective Hamiltonian
in (4). The effective Wilson coefficient Ceff8 is defined as
Ceff8 = C8+C3−C4/6+20C5−10C6.
For the operatorsQ7,Q9 andQ10, the matchings to the

A-type currents give

∆7C
A
1 =

αem

2π

mb(µQCD)

mb

2

ŝ
C̃9C

eff
7 ,

∆7C
A
2 =

αem

2π

mb(µQCD)

mb
2C̃10C

eff
7 ,

∆9C
A
1 =

αem

2π
C̃3C

eff
9 ,

∆9C
A
2 =

αem

2π

(
C̃4+

1− ŝ

2
C̃5

)
Ceff9 ,

∆10C
A
3 =

αem

2π
C̃3C10 ,

∆10C
A
4 =

αem

2π

(
C̃4+

1− ŝ

2
C̃5

)
C10 . (16)

Fig. 2. Tree-level matching of Qi onto B-type
SCET currents. The crossed circles denote the
possible locations from where the virtual photon
is emitted, while the crosses mark the possible
places where a gluon line may be attached

To avoid confusion with the Wilson coefficients in (4), we
use the notation C̃i for the matching coefficients, instead of
Ci as used originally in [16]. The explicit expressions of C̃i
up to one-loop order can be read from [16, 23]. Note that
although the operator basis of the tensor current in [23]
looks slightly different from that of [16]; they are actually

the same, and it is easy to find the relations C̃9 = C
(A0)2
T

and C̃10 = C
(A0)1
T . The effective Wilson coefficients are de-

fined as Ceff7 = C7−C3/3−4C4/9−20C5/3−80C6/9 and
Ceff9 (q

2) =C9+Y (q
2), where the function Y (q2) represents

the contributions of the fermion loops and the explicit for-
mula can be found in [14].
To get the decay amplitude ofB→K∗�+�− in order αs,

the tree-level matching of the effective weak Hamiltonian
(4) onto the B-type SCET currents (11) is already enough,
as illustrated in Fig. 2. If we let the notation ∆16C

B
i stand

for the matchings of Q1−6 onto the B-type SCET currents
JBi , namely ∆16C

B
i ≡

∑6
j=1∆jC

B
i , we get from Fig. 2a

that

∆16C
B
1 =−

αem

2π

1

mbŝ

(
2

3
F⊥16
(
u, ŝ,m2c/m

2
b

) (
C̄2+ C̄4− C̄6

)
−
1

3
F⊥16(u, ŝ, 0)C̄3

−
1

3
F⊥16(u, ŝ, 1)

(
C̄3+ C̄4− C̄6−4C̄5

))
,

∆16C
B
2 =

αem

2π

2

mb

(
2

3
F
‖
16

(
u, ŝ,m2c/m

2
b

) (
C̄2+ C̄4− C̄6

)
−
1

3
F
‖
16(u, ŝ, 0)C̄3

−
1

3
F
‖
16(u, ŝ, 1)

(
C̄3+ C̄4− C̄6

))
, (17)

where u is the momentum fraction carried by the strange
quark in theK∗ meson. The functions F

⊥,‖
16 are defined as

F⊥16(u, ŝ, λ)

= 1+
2

(1− ŝ)(1−u)

(
ŝ

(√
−ŝ+4λ
√
ŝ

arctan

√
ŝ

√
−ŝ+4λ

−

√
−1+u− ŝu+4λ√
1− (1− ŝ)u

arctan

√
1− (1− ŝ)u

√
−1+u− ŝu+4λ

)
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+λ Li2

(
2
√
ŝ

√
ŝ −
√
ŝ−4λ

)
+λ Li2

(
2
√
ŝ

√
ŝ +
√
ŝ−4λ

)

−λ Li2

(
2
√
1− (1− ŝ)u√

1− (1− ŝ)u+
√
1− (1− ŝ)u−4λ

)

−λ Li2

(
2
√
1− (1− ŝ)u√

1− (1− ŝ)u−
√
1− (1− ŝ)u−4λ

))
,

(18)

F
‖
16(u, ŝ, λ)

= 2ŝ+
4ŝ

(1− ŝ)(1−u)

(
(1−u+uŝ)

×

(√
−ŝ+4λ
√
ŝ

arctan

√
ŝ

√
−ŝ+4λ

−

√
−1+u− ŝu+4λ√
1− (1− ŝ)u

arctan

√
1− (1− ŝ)u

√
−1+u− ŝu+4λ

)

+λ Li2

(
2
√
ŝ

√
ŝ −
√
ŝ−4λ

)
+λ Li2

(
2
√
ŝ

√
ŝ +
√
ŝ−4λ

)

−λ Li2

(
2
√
1− (1− ŝ)u√

1− (1− ŝ)u+
√
1− (1− ŝ)u−4λ

)

−λ Li2

(
2
√
1− (1− ŝ)u√

1− (1− ŝ)u−
√
1− (1− ŝ)u−4λ

))
. (19)

As a check, it is not difficult to find the following relations:

F⊥16(u, ŝ,
m2q
m2b
) = t⊥(u,mq)

(1−u)E

2MB
,

F
‖
16(u, ŝ,

m2q

m2b
) = t‖(u,mq)

ŝ(1−u)E

MB
,

where the functions t⊥,‖(u,mq) are defined in (27) and (28)
in the paper by Beneke et al. [14]. We also note that the

functions F⊥16(u, ŝ, λ) and F
‖
16(u, ŝ, λ) are finite as ū= 1−

u→ 0, as opposed to the functions t⊥,‖(u,mq), which are
singular as ū→ 0.
Figure 2d and the operator Q9 of Fig. 2f, combined

with Fig. 2b, will contribute to the matching coefficients

Fig. 3. The diagrams where the virtual photon,
as denoted by the crossed circle, is emitted from
the spectator quark

∆7,9C
B
1,2, while the operator Q10 of Fig. 2f will contribute

to ∆10C
B
3,4:

∆7C
B
1 =−

αem

2π

mb

m2b ŝ
2Ceff7 ,

∆7C
B
2 =

αem

2π

mb

m2b(1− ŝ)
2Ceff7 ,

∆9C
B
1 = 0 , ∆9C

B
2 =−

αem

2π

1−2ŝ

mb(1− ŝ)
Ceff9 ,

∆10C
B
3 = 0 , ∆10C

B
4 =−

αem

2π

1−2ŝ

mb(1− ŝ)
C10 . (20)

Finally, Fig. 2e and c contribute to the matching coeffi-
cients

∆8C
B
1 =−

αem

2π

mb

m2b

2(1−u)(1− ŝ)

3ŝ(u+ ŝ−uŝ)
Ceff8 , ∆8C

B
2 = 0 .

(21)

We shall now consider the diagrams where the virtual (off-
shell) photon is emitted from the spectator quark, as shown
in Fig. 3. Due to the off-shellness of the quark propaga-
tor, it is easy to check that Fig. 3d–f are of order 1/mb
suppressed compared with Fig. 3a–c, where the photon is
emitted from the spectator quark in the B meson. There-
fore at leading power in 1/mb, only the first three diagrams
in Fig. 3 are relevant for our analysis. As we shall see in
the following, all of these three diagrams contribute to the
Wilson coefficients of the C-type SCET current.
The annihilation diagram, shown in Fig. 3a, contributes

to the matching coefficient CC at order α0s , for which the
calculation is trivial:

∆
(0)
16 C

C =
2

3

(
−
V ∗usVub

V ∗tsVtb
(C̄1+3C̄2)δqu+(C̄3+3C̄4)

)
.

(22)

Here q is the flavor of the spectator quark in the B me-
son and the superscript (0) denotes the matching at order
α0s . At order αs, the diagrams shown in Fig. 3b–c also con-
tribute to the matching onto the C-type SCET current
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with the coefficients

∆8C
C =

CF

Nc

αs

4π

−4Ceff8
1−u+uŝ

,

∆
(1)
16 C

C = 2
CF

Nc

αs

4π

{ (
C̄2+ C̄4+ C̄6

)
G
(
u, ŝ,m2c/m

2
b

)
+
(
C̄3+3C̄4+3C̄6

)
G (u, ŝ, 0)

+
(
C̄3+ C̄4+ C̄6

)
G (u, ŝ, 1)

+
4

9

(
C̄3− C̄5−15C̄6

)}
, (23)

where the function G(u, ŝ, λ) is defined as

G(u, ŝ, λ) =
2

3
+
2

3
ln
m2b
µ2

+4

∫ 1
0

dx x(1−x) ln[λ−x(1−x)(1−u+uŝ)] .

(24)

2.2 SCETI→ SCETII matching

As shown in [21, 25], which analyzed the form factors
in the framework of SCET, one may simply define the
matrix elements of the A-type SCETI currents as non-
perturbative input since the non-factorizable parts of the
form factors are all contained in such matrix elements.
Therefore the explicit matching of JAi to SCETII operators
is not necessary here.
For B-type SCETI operators, they are matched onto

the following SCETII operators:

OB1 = X̄c(sn̄)(1+γ5)γ
µ
⊥

/̄n

2
Xc(0)

×Q̄s(tn)(1−γ5)
/n

2
Hs(0) �̄γµ� ,

OB2 = X̄c(sn̄)(1+γ5)
nµ

n ·v

/̄n

2
Xc(0)

×Q̄s(tn)(1+γ5)
/n

2
Hs(0) �̄γµ� ,

OB3 = X̄c(sn̄)(1+γ5)γ
µ
⊥

/̄n

2
Xc(0)

×Q̄s(tn)(1−γ5)
/n

2
Hs(0) �̄γµγ5� ,

OB4 = X̄c(sn̄)(1+γ5)
nµ

n ·v

/̄n

2
Xc(0)

×Q̄s(tn)(1+γ5)
/n

2
Hs(0) �̄γµγ5� , (25)

where we only include the color-singlet operators that
have non-zero matrix elements for the B→K∗�+�− decay.
Again, it is in practice more convenient to do the matching
calculations in the momentum space, and the Wilson co-
efficients DBi (ω, u) can be defined by Fourier transforming
the corresponding ones, D̃Bi (s, t), introduced in position
space, just like the case in SCETI,

DBi (ω, u) =

∫
ds

∫
dt e−iωn·vteiusn̄·P D̃Bi (s, t). (26)

Following the notation of [26], the Wilson coefficients DBi
can be expressed as

DBi (ω, u, ŝ, µ)

=
1

ω

∫ 1
0

dv Ji

(
u, v, ln

mbω(1− ŝ)

µ2
, µ

)
CBi (v, µ) ,

(27)

where the jet functions Ji arise from the SCETI→ SCETII
matching, and it is clear that J1 = J3 ≡J⊥ and J2 = J4 ≡
J‖. At tree level, using the Fierz transformation in the op-
erator basis,

X̄cNHs Q̄sMXc

=−
1

4
X̄c(1+γ5)

/̄n

2
Xc Q̄sM(1−γ5)×

/n

2
NHs

−
1

4
X̄c(1−γ5)

/̄n

2
XcQ̄sM(1+γ5)

/n

2
NHs

−
1

8
X̄c(1+γ5)

/̄n

2
γ⊥αXc Q̄sM(1+γ5)γ

α
⊥

/n

2
NHs , (28)

one obtains

J⊥(u, v) = J‖(u, v) =−
4πCFαs
Nc

1

mb(1−u)(1− ŝ)
δ(u− v).

(29)

Finally, the C-type SCETI current is matched onto the
SCETII operator

OC = X̄c(sn̄)(1+γ5)
/̄n

2
Xc(0) Q̄s̄(tn̄)(1+γ5)

×
/n

2
Hs̄(0)

n̄µ

n̄ ·v
�̄γµ� . (30)

We may similarly define

DC(ω, u) =

∫
ds

∫
dt e−iωn̄·vteiusn̄·P D̃C(s, t), (31)

with

DC(ω, u, ŝ, µ) =
−eeqŝ

(ω− q2/mb− iε)
J C
(
ln
mbω(1− ŝ)

µ2
, µ

)
×CC(E, u, µ) , (32)

where eq is the electric charge of the spectator quark in
the B meson. Note that the prefactor in (32), −eeqŝ/(ω−
q2/mb− iε), has been factored out from the definition of
J C . The denominator of this prefactor comes from the
propagator of the hard-collinear spectator quark, as seen in
Fig. 3. With this, at tree level the corresponding jet func-
tion is trivial, J C = 1. For later convenience, we will define
DC ≡ D̂C/(ω− q2/mb− iε).

2.3 Matrix elements of SCET operators

The last step before we can finally get the decay amplitude
for the B→K∗�+�− decay is to take the matrix elements
of the relevant SCET operators. Since the soft and collinear
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parts do not factorize in the matrix elements of the opera-
tor JA in SCETII due to an end-point singularity, we will
define the matrix elements of the J A current in SCETI.
Following [26], they may be defined as follows:〈
M(p)|X̄hcΓh|B(v)

〉
=−2EζM(E)tr

[
MM(n)ΓMB(v)

]
,

(33)

where the projection operators are

MB(v) =−
1+/v

2
γ5 , MK∗⊥

(n) = /ε∗⊥
/̄n/n

4
,

MK∗
‖
(n) =−

/̄n/n

4
, (34)

with εµ⊥ being the polarization vector of the K
∗
⊥ meson. It

is then straightforward to get the matrix elements of the
SCETI currents J

A
i as〈

K∗�+�−|JA1 |B
〉
=−2Eζ⊥

(
gµν⊥ − iε

µν
⊥

)
ε∗⊥ν �̄γµ� ,〈

K∗�+�−|JA2 |B
〉
=−2Eζ‖

nµ

n ·v
�̄γµ� ,〈

K∗�+�−|JA3 |B
〉
=−2Eζ⊥

(
gµν⊥ − iε

µν
⊥

)
ε∗⊥ν �̄γµγ5� ,〈

K∗�+�−|JA4 |B
〉
=−2Eζ‖

nµ

n ·v
�̄γµγ5� , (35)

where gµν⊥ ≡ g
µν − (nµn̄ν + n̄µnν)/2 and εµν⊥ ≡ ε

µνρσvρnσ/
(n ·v). Note that, in the above equations, we use the con-
vention ε0123 =+1, as adopted in the book by Peskin and
Schroeder [33].
For theB-type SCETII operators (25), although naively

the soft and collinear degrees of freedom seem to be decou-
pled, the factorization may be invalidated unless no end-
point divergences appear in the convolution integrals [21,
22]. The relevant meson LCDAs are defined as [13, 34]

〈0|Q̄s(tn)ΓHs(0)|B(v)〉

=
iF (µ)

2

√
mB

∫ ∞
0

dω e−iωn·vt

× tr

[(
φB+(ω, µ)−

/n

2n ·v

(
φB−(ω, µ)−φ

B
+(ω, µ)

))

×ΓMB(v)

]
,

〈
K∗(p)|X̄c(sn̄)Γ

/̄n

2
Xc(0)|0

〉
=
ifK∗(µ)

4
n̄ ·p tr

[
MK∗Γ

] ∫ 1
0

du eiusn̄·pφK∗(u, µ) , (36)

where two differentK∗-distribution amplitudes (φ
‖
K∗(u, µ)

for Γ = 1 and φ⊥K∗(u, µ) for Γ = γ⊥) with their corres-

ponding decay constants f
‖
K∗ and f

⊥
K∗(µ), respectively, are

involved; F (µ) is related to theB meson decay constant fB
up to higher orders in 1/mb by [35]

fB
√
mB = F (µ)

(
1+
CFαs(µ)

4π

(
3 ln
mb

µ
−2

))
. (37)

With the above LCDAs, the matrix elements of the opera-
tors OBi can be written as〈

K∗�+�−|CB1 O
B
1 |B
〉

=−
F (µ)m

3/2
B

4
(1− ŝ)

(
gµν⊥ − iε

µν
⊥

)
ε∗⊥ν �̄γµ�

×

∫ ∞
0

dω

ω
φB+(ω, µ)

∫ 1
0

du fK∗⊥(µ)φK
∗
⊥
(u, µ)

×

∫ 1
0

dvJ⊥(u, v, ln
mbω(1− ŝ)

µ2
, µ)CB1 (v, µ)

≡−
F (µ)m

3/2
B

4
(1− ŝ)

(
gµν⊥ − iε

µν
⊥

)
ε∗⊥ν �̄γµ� φ

B
+

⊗fK∗⊥φK
∗
⊥
⊗J⊥⊗C

B
1 ,〈

K∗�+�−|CB2 O
B
2 |B
〉

=−
F (µ)m

3/2
B

4
(1− ŝ)

nµ

n ·v
�̄γµ� φ

B
+

⊗fK∗
‖
φK∗

‖
⊗J‖⊗C

B
2 , (38)

while for the matrix element of CB3 O
B
3 (C

B
4 O

B
4 ), it can be

obtained by simply replacing the lepton current �̄γµ� on the
right hand side of the above equations by �̄γµγ5� and also

replacing CB1 →C
B
3 (C

B
2 →C

B
4 ).

The matrix element ofOC is obtained likewise, with the
result

〈K∗�+�−|DCOC |B〉=−
F (µ)m

3/2
B

4
(1− ŝ)

n̄µ

n̄ ·v
�̄γµ�

×
ωφB−

ω− q2/mb− iε
⊗fK∗

‖
φK∗

‖
⊗ D̂C .

(39)

Since φB−(ω) does not vanish as ω approaches zero, the inte-
gral
∫
dω φB−(ω)/(ω− q

2/mb) would be divergent if q
2→ 0.

This end-point singularity will violate the SCETII factor-
ization; that is why we should restrict our attention to the
kinematic region where the invariant mass of the lepton
pair is not too small, say q2 ≥ 1 GeV2.

2.4 Resummation of logarithms in SCET

In the above analysis a two-step matching procedure
QCD→ SCETI→ SCETII has been implemented. This in-
troduces two matching scales, µh ∼mb at which QCD is
matched onto SCETI and µl ∼

√
mbΛ at which SCETI is

matched onto SCETII. Thus, with the SCETI matching
coefficients at scale µh, one may use the renormalization-
group equations (RGE) of SCETI to evolve them down
to scale µl and then match onto SCETII. The large log-
arithms due to different scales are resummed during this
procedure. Note that the meson LCDAs may be given at
another scale µL, and, in principle, one should also use the
RGE of SCETII to run the corresponding matching co-
efficients from µl down to µL. But since in B decays the
scale µl � 1.5 GeV is already quite low, we may just take
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the meson LCDAs at the scale µl in this paper for simpli-
city and thereby avoid the running of the SCETII matching
coefficients.
Furthermore, one should note that for the A-type

SCET currents only the scale µh is involved, since it is
not necessary to do the second step matching of SCETI→
SCETII. Similarly, we may choose the non-perturbative
form factors ζ⊥,‖ at the scale µh and avoid the RGE
running of the A-type SCETI matching coefficients. For
the B-type currents, the RGE of SCETI can be ob-
tained by calculating the anomalous dimensions of the
relevant SCET operators, which has been done in [31],
where the matching coefficients at any scale µ can be ob-
tained by an evolution from the matching scale µh as
follows:

CBj (E, u, µh, µ)

=

(
2E

µh

)a(µh,µ)
eS(µh,µ)

∫ 1
0

dv UΓ (u, v, µh, µ)C
B
j (E, v, µh)

≡

(
2E

µh

)a(µh,µ)
eS(µh,µ) Ũ jΓ (E, u, µh, µ) , (40)

with the subscript Γ =⊥, ‖, and the functions a(µh, µ) and
S(µh, µ) are given in (66) of [31]. Note that in the above
equation one should use the subscript Γ =⊥ for j = 1, 3
and Γ =‖ for j = 2, 4. The evolution kernel Ũ jΓ (E, u, µh, µ)
obeys

dŨ jΓ (E, u, µh, µ)

d lnµ
=

∫ 1
0

dy yVΓ (y, u)Ũ
j
Γ (E, y, µh, µ)

+ω(u)Ũ jΓ (E, u, µh, µ) , (41)

with the initial condition Ũ jΓ (E, u, µh, µh) = C
B
j (E, u, µh).

Again, the functions VΓ (y, u) and ω(u) are defined in [31].
In the next section on phenomenological application,
we will solve the above integro-differential equation
numerically.
Finally, for the C-type SCET current JC , its anoma-

lous dimension just equals the sum of the anomalous di-
mensions of the K∗ meson LCDA φK∗ and the B me-
son LCDA φB−. However, as the evolution equation of φ

B
−

is still unknown, we will not resum the perturbative log-
arithms for the JC current in this paper. Numerically
the contribution from the JC current to the decay ampli-
tude is small. Furthermore, as we will see later, the JC

current is completely irrelevant for the forward–backward
asymmetry of the charged leptons. Therefore, this treat-
ment has only a minor impact on our phenomenological
discussion.

3 Numerical analysis of B→K��+��

We are now in the position to write the decay amplitude of
B→K∗�+�−, using a notation similar to the one adopted
in [14],

d2Γ

dq2d cos θ
=
G2F|V

∗
tsVtb|

2

128π3

(αem
4π

)2
m3BλK∗

(
1−
q2

m2B

)2

×
{
2ζ2⊥(1+cos

2 θ)
q2

m2B

(
|C⊥9 |

2+(C⊥10)
2
)

−8ζ2⊥ cos θ
q2

m2B
Re
(
C⊥9
)
C⊥10

+ ζ2‖(1− cos
2 θ)
(
|C‖9 |

2+(C‖10)
2
)}
, (42)

withmBλK∗/2 being the 3-momentum of theK
∗ meson in

the rest frame of the B meson,

λK∗ =

[(
1−
q2

m2B

)2
−2
m2K∗

m2B

(
1+
q2

m2B

)
+
m4K∗

m4B

]1/2
.

(43)

The angle θ denotes the angle between the momenta of
the positively charged lepton and the B meson in the rest
frame of the lepton pair. Note that in the above equations
the leptons are taken in the massless limit and the K∗ me-
son mass is kept non-zero only for λK∗ , which arises from
the phase space. The “effective” Wilson coefficients C⊥,‖9
and C⊥,‖10 are given by

C⊥9 =
2π

αem

(
CA1 +

mB

4

fBφ
B
+⊗f

⊥
K∗φ

⊥
K∗ ⊗J⊥⊗C

B
1

ζ⊥

)
,

C
‖
9 =

2π

αem

(
CA2 +

mB

4

fBφ
B
+⊗f

‖
K∗φ

‖
K∗ ⊗J‖⊗C

B
2

ζ‖

−
q2

4mB

fBωφ
B
−/
(
ω− q2/mb− iε

)
⊗f‖K∗φ

‖
K∗ ⊗ D̂

C

ζ‖

)
,

C⊥10 =
2π

αem
CA3 ,

C‖10 =
2π

αem

(
CA4 +

mB

4

fBφ
B
+⊗f

‖
K∗φ

‖
K∗ ⊗J‖⊗C

B
4

ζ‖

)
,

(44)

where CA,Bi and DC are defined in (13) and (32), respec-
tively. The above expressions are valid at leading power in
1/mb and to all orders in αs. But in this paper we only
calculate explicitly the “effective Wilson coefficients” at
one-loop order. At this order our results are quite similar to
those of [14] using the large-energy limit of QCD. The main
phenomenological improvement is that for the hard scat-
tering part; the matching coefficients CBi are evolved from
the scale µh ∼O(mb) down to µl ∼

√
mbΛh, during which

the perturbative logarithms are summed. Here, Λh repre-
sents a typical hadronic scale. Note also that the definitions
of the soft form factors ζ⊥,‖ in SCET are different from
those of [14]; therefore the explicit expressions for CAi are
also different from the coefficients C0,1a appearing in [14],
which are related to the form factor corrections.
In terms of the helicity amplitudes for the decay

B→K∗(→K+π)�+�−, the double differential distribu-
tion d2B/d cos θ+ds is given in (44) of [36]. This requires
the helicity amplitudes, |H0(s)|2 = |HL0 (s)|

2+ |HR0 (s)|
2,
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|HL,R− (s)|2 and |HL,R+ (s)|2. While the amplitudes HL,R+ (s)
are both power-suppressed in 1/mb and numerically small,
the expressions for the other ones in SCET are given here:

|H0|
2 =
m2B
2

(
1−
q2

m2B

)2 (
|C‖9 |

2+(C‖10)
2
)
ζ2‖ ,

|HL,R− |2 = q2
(
1−
q2

m2B

)2
|C⊥9 ±C

⊥
10|
2ζ2⊥ . (45)

Note that the dependence on the soft form factors fac-
torizes in ζ2‖ and ζ

2
⊥ for the helicity components |H0|

2

and |HL,R− |2, respectively. Since a similar analysis in terms
of the helicity amplitudes of the charged current decay
B→ ρ(→ ππ)�+ν� can be performed, the ratios R0(s) and
R−(s) of the two differential distributions (in B→K∗(→
Kπ)�+�− and B→ ρ(→ ππ)�+ν�) have lot less hadronic
uncertainties, as these ratios (see (76) in [36] for their defin-
ition) involve estimates of the SU(3)-breaking in the soft
form factors. The point is that the ratios ζK

∗

‖ /ζ
ρ
‖ and

ζK
∗

⊥ /ζ
ρ
⊥ are more reliably calculable than the form factors

themselves.

3.1 Input parameters

To get the differential distributions numerically, some in-
put parameters have to be specified. For the calculation of
the Wilson coefficients, the relevant parameters are chosen
as [37]

MW = 80.425GeV , sin
2 θW = 0.2312 ,

Λ
(5)

MS
= 217+25−23 MeV , (46)

and mpolet = (172.7± 2.9) GeV, updated recently by the
Tevatron electroweak group [38]. Numerical values of the
Wilson coefficients, evaluated at scale µ =mb = 4.8 GeV,
with the three-loop running of αs and the input parame-
ters fixed at their central values given above are shown in
Table 1. Note that the NNLL formula for C9 can be found,
for example, in the appendix of [14], while the relevant
elements of the three-loop anomalous dimension matrix
have been calculated recently in [39, 40].
The CKM factor |VtsV ∗tb| � (1−λ

2/2)|Vcb| is estimated
to be 0.0403±0.0020 by taking |Vcb|= 0.0413±0.0021 [41]
and λ= 0.2226. For the B meson lifetimes, we use τB+ =
1.643 ps and τB0 = 1.528 ps [41]. The pole mass mb is cho-
sen to be 4.8GeV. The ratio of the charm quark mass
over the b-quark mass is taken to be mc/mb = 0.29±0.02.
For the matching scale from SCETI to SCETII, we use
µl =

√
mbΛh � 1.5 GeV.

The hadronic parameters for the decay B→K∗�+�−

include decay constants, light-cone distribution ampli-
tudes (LCDAs) and the soft form factors. The B meson
decay constant can be estimated by QCD sum rules or
lattice calculations; here we take fB = (200± 30) MeV.
For the K∗ meson, experimental measurements give [37]

f
‖
K∗ = (217± 5) MeV, while the most recent light-cone
sum rules (LCSRs) estimate [42] is f⊥K∗(1 GeV) = (185±

10) MeV. Note that f⊥K∗ obeys the scale evolution equation
f⊥K∗(µ) = f

⊥
K∗(µ0)(αs(µ)/αs(µ0))

4/23.
The B meson LCDAs enter into the decay ampli-

tudes only in terms of the integrated quantities λ−1B,+ and

λ−1B,−(q
2) defined by the following integrals:

λ−1B,+ ≡

∫ ∞
0

dω

ω
φB+(ω) ,

λ−1B,−(q
2)≡

∫ ∞
0

dω
φB−(ω)

ω− q2/mb− iε
. (47)

Therefore, it is not necessary to know the details about
the shape of φB+(ω). The most recent estimate gives [43]
λ−1B,+ = (1.86±0.34)GeV

−1 at the scale µ= 1.5GeV. How-

ever, λ−1B,−(q
2) does require the knowledge of φB−(ω), about

which we know very little. Fortunately, λ−1B,−(q
2) only ap-

pears in the annihilation term which plays numerically
a minor role in the B→K∗�+�− decay. To be definite, we
adopt a simple model function [34], φB−(ω) = ω

−1
0 e

−ω/ω0 ,
with ω−10 � 3 GeV

−1.
The K∗ meson LCDAs may be expanded in terms of

Gegenbauer polynomials:

φ
⊥,‖
K∗ (u, µ) = 6u(1−u)

[
1+

∞∑
n=1

a⊥,‖n (µ)C
3/2
n (2u−1)

]
.

(48)

However, the coefficients an are largely unknown. Follow-
ing [44], we shall ignore the terms a

⊥,‖
n (n > 2). For a1,2,

we omit their scale dependence and estimate in a conser-
vative manner: a

⊥,‖
1 = 0.1±0.1, a⊥,‖2 = 0.1±0.1. We note

that recently the first Gegenbauer moment of the K∗ me-
son has been revisited in LCSRs [42], which gives smaller
uncertainties.
There are only two independent B→K∗ form factors

in SCET, namely ζ⊥(q
2) and ζ‖(q

2). They are related to
the full QCD form factors as discussed in [31]. The cur-
rent knowledge of these form factors is fragmentary. For
instance, ζ⊥ may be extracted from V

B→K∗ [26]:

ζ⊥(q
2) =

ζ⊥(0)

rV1 + r
V
2

(
rV1

1− q2/m2V
+

rV2
1− q2/m2V fit

)
, (49)

with rV1 = 0.923, r
V
2 =−0.511,mV = 5.32GeV andm

2
V fit =

49.40GeV2. Note that the q2-dependence above is the
same as that of V B→K

∗
(q2), calculated in [44] using LC-

SRs. However, analyses of the radiative B decays B→
K∗γ [14, 26, 45, 46], B→ ργ [45, 46] and the semi-leptonic
B decay B → ρ�ν [47] imply that the LCSRs overesti-
mate the B→ V form factors significantly. We use the
radiative B→K∗γ decay, which has been measured quite
precisely [41]: B(B0 → K∗0γ) = (4.01± 0.20)× 10−5, to
normalize the soft form factor at q2 = 0. In SCET, it is
straightforward to get the decay amplitude of B→K∗γ
from the B→K∗⊥�

+�− decay, by taking the limit q2→ 0.
Then, using the input parameters from Table 2, we ob-
tain ζ⊥(0) = 0.32±0.02. Here the error is mainly from the
CKM factor VtsV

∗
tb and the experimental uncertainty of the
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Table 2. Numerical values of the input parameters and their uncertainties
used in the phenomenological study

MW 80.425 GeV sin2 θW 0.2312

m
pole
t (172.7±2.9) GeV Λ

(5)

MS

(
217+25−23

)
MeV

|VtsV
∗
tb| (40.3±2.0)×10−3 αem(mb) 1/133

mB 5.279 GeV m
pole
b 4.8 GeV

τB+ 1.643 ps τB0 1.528 ps
mc/mb 0.29±0.02 µl 1.5 GeV

λ−1B,+(1.5 GeV) (1.86±0.34) GeV−1 fB (200±30) MeV

ζ⊥(0) 0.32±0.02 ζ‖(0) 0.40±0.05

f⊥K∗(1 GeV) (185±10) MeV f
‖
K∗ (217±5) MeV

a
⊥,‖
1 0.1±0.1 a

⊥,‖
2 0.1±0.1

branching ratio B(B0→K∗0γ). This estimate is consistent
with the result of [26], but it is significantly smaller than
the value of 0.40±0.04 we get from LCSRs. In our numer-
ical analysis, we will choose the value ζ⊥(0) = 0.32±0.02
as determined from the radiative B decays, but we assume
that the q2-dependence of ζ⊥(q

2) can be reliably obtained
from the LCSRs.
For the longitudinal soft form factor ζ‖, unfortunately,

there is no quantitative determination from the exist-
ing experiments, though this may change in the future
with good quality data available on the decay B→ ρ�ν�.
Using a helicity analysis, one can extract ζρ‖ (q

2); com-

bined with estimates of the SU(3)-breaking one may deter-
mine ζK

∗

‖ (q
2). Not having this experimental information

at hand, one may extract ζ‖(q
2) from the full QCD form

factor AB→K
∗

0 (q2):

AB→K
∗

0 (q2)

=

[
1−
αs(mb)CF
4π

(
2 ln2[1− s]−

2

s
ln[1− s]

+2 Li2[s]+4+
π2

12

)]
ζ‖(q

2)

−
1

4(1− s)
fBφ

B
+⊗f

‖
K∗φ

‖
K∗ ⊗J‖

⊗

(
2E

µh

)a(µh,µl)
eS(µh,µl)

∫ 1
0

dy U‖(v, y, µh, µl) ,

(50)

with s= q2/m2B. LCSRs estimate [44]A
B→K∗
0 (0) = 0.374±

0.043 with the q2-dependence

AB→K
∗

0 (q2) =
1.364

1− q2/m2B
−

0.990

1− q2/36.78GeV2
. (51)

From this we get ζ‖(0) = 0.40±0.05, using the input pa-
rameters discussed above and/or listed in Table 2. Its
q2-dependence is drawn in Fig. 4.

Fig. 4. The q2-dependence of the soft form factors ζ⊥,‖(q
2).

The solid curve represents ζ⊥(q
2), while the dashed curve rep-

resents ζ‖(q
2). We have rescaled the transverse form factor at

q2 = 0 to be consistent with the experimental measurements of
the B→K∗γ decay rate

Alternatively, ζ‖(q
2) may also be determined from the

following relation:

EmB(V −A2)B→K
∗
(q2)

mK∗(mB+mK∗)

=

[
1−
αs(mb)CF
4π

(
2 ln2[1− s]−2 ln[1− s]

+2 Li2[s]+6+
π2

12

)]
ζ‖(q

2)

−
1−2s

4(1− s)
fBφ

B
+⊗f

‖
K∗φ

‖
K∗ ⊗J‖⊗

(
2E

µh

)a(µh,µl)

× eS(µh,µl)
∫ 1
0

dy U‖(v, y, µh, µl) . (52)

With the input V B→K
∗
(0)−AB→K

∗

2 (0) = 0.152± 0.057
from LCSRs, we obtain ζ‖(0) = 0.42±0.16, which agrees
with the range extracted fromAB→K

∗

0 . We will use ζ‖(0) =
0.40±0.05, obtained from its relation to the full form fac-
tor AB→K

∗

0 and the LCSR, as discussed above. Figure 4
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shows the q2-dependence of both soft form factors ζ⊥,‖(q
2).

However, since the analysis of the semileptonic decay B→
ρ�ν [47] suggests that both the transverse and longitudi-
nal form factors might be overestimated by LCSRs, we
will also consider, as an illustration of the non-perturbative
uncertainties, the value ζ‖(0) = ζ⊥(0) = 0.32 with all the
other parameters taken at their central values.

3.2 Numerical solution
of the SCETI evolution functions

As we discussed in Sect. 2.4, the B-type matching coeffi-
cients CBi should be run from the scale µh = 4.8 GeV down
to µl = 1.5 GeV, with the evolution kernel ŨΓ (E, u, µh, µ)
obeying the integro-differential equation (41). To solve this
equation numerically, it is more convenient to define the
following evolution functions:

Ũ
(a)
Γ (E, u, µh, µ) =

∫ 1
0

dvUΓ (u, v, µh, µ) ,

Ũ
(b)
Γ (E, u, µh, µ) =

u+ ŝ−uŝ

1−u

∫ 1
0

dvUΓ (u, v, µh, µ)

×
1− v

v+ ŝ− vŝ
,

Ũ
(c)
Γ (E, u, µh, µ) =

∫ 1
0

dvUΓ (u, v, µh, µ)
FΓ16
(
v, ŝ,m2c/m

2
b

)
FΓ16 (u, ŝ,m

2
c/m

2
b)
,

(53)

where Γ =⊥, ‖, and the functions F
⊥,‖
16 (u, ŝ,m

2
c/m

2
b) are

defined in (18) and (19). Note that at the quark level the
K∗ meson energy is related to ŝ by E =mb(1− ŝ)/2 in

Fig. 5. Numerical values of the func-

tions Ũ
(a,b,c)
Γ (E, u, µh, µl), evolved

from µh = 4.8 GeV down to µl =
1.5 GeV; the relevant parameters are
taken at their central values. For the
upper-left plot, the solid line denotes

Ũ
(a)
⊥ , while the dashed line denotes

Ũ
(a)
‖ . For the lower plots, since Ũ

(c)
Γ

are complex functions, we only show
their absolute values

the rest frame of the b-quark. With such definitions, the
above evolution functions are normalized to one at the
scale µh: Ũ

(a,b,c)
Γ (E, u, µh, µh) = 1, and the QCD parame-

ter Λ
(5)

MS
would be the only input for their numerical eval-

uations. The matching coefficients CBj at scale µl can then
be written as

∆iC
B
j (E, u, µl) =

(
2E

µh

)a(µh,µl)
eS(µh,µl)

× Ũ (a,b,c)Γ (E, u, µh, µl)∆iC
B
j (E, u, µh) ,

(54)

where we should use the superscript (a) for ∆7,9,10C
B
j ,

the superscript (b) for ∆8C
B
j and the superscript (c) for

∆16C
B
j . For the subscript Γ , one should use Γ =⊥ for j =

1, 3 and Γ =‖ for j = 2, 4, which is the same as the conven-
tion of (40). Note that for the evolution of ∆16C

B
j , we have

taken into account the fact that the term FΓ16(u, ŝ,m
2
c/m

2
b)

is dominant due to the large Wilson coefficient C̄2.
It is then straightforward to get the following evolution

equations:

dŨ
(a)
Γ (E, u, µh, µ)

d lnµ
=

∫ 1
0

dy yVΓ (y, u)Ũ
(a)
Γ (E, y, µh, µ)

+ω(u)Ũ
(a)
Γ (E, u, µh, µ) ,

dŨ
(b)
Γ (E, u, µh, µ)

d lnµ
=

∫ 1
0

dy yVΓ (y, u)
(1−y)(u+(1−u)ŝ)

(1−u)(y+(1−y)ŝ)

× Ũ (b)Γ (E, y, µh, µ)

+ω(u)Ũ
(b)
Γ (E, u, µh, µ) ,
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dŨ
(c)
Γ (E, u, µh, µ)

d lnµ
=

∫ 1
0

dy yVΓ (y, u)
FΓ16
(
y, ŝ,m2c/m

2
b

)
FΓ16 (u, ŝ,m

2
c/m

2
b)

× Ũ (c)Γ (E, y, µh, µ)

+ω(u)Ũ
(c)
Γ (E, u, µh, µ) . (55)

To get the numerical solutions of the above integro-
differential equations, we will perform the scale evolu-
tion in one hundred discrete steps, while from the scale
µn to µn+1, the convolution integral is evaluated for
three hundred different values and discrete ŝ-values of
δŝ = 0.01 in the interval ŝ ∈ [0.04, 0.35]. The function
ŨΓ (E, u, µh, µn+1) is obtained from a fit to these values.

Taking Λ
(5)

MS
= 217MeV, the numerical results of these evo-

lution functions are shown in Fig. 5. Note that the function
Ũ
(a)
Γ (E, u, µh, µ) actually does not depend on the energy
E, as shown in Fig. 5a. In fact, it is just the same function
as UΓ (u, µh, µ) defined in (5.23) by Neubert et al. [31]. The

function Ũ
(b)
‖ is not shown in Fig. 5, since it does not en-

ter into the decay amplitude at the one-loop level, due to
∆8C

B
2 = 0. For the complex functions Ũ

(c)
Γ , only the abso-

lute values of the functions are plotted.

3.3 The dilepton invariant mass spectrum
and the forward–backward asymmetry

Experimentally, the dilepton invariant mass spectrum and
the forward–backward (FB) asymmetry are the observ-
ables of principal interest. Their theoretical expressions in
SCET can be easily derived from (42):

dBr

dq2

= τB
G2F|V

∗
tsVtb|

2

128π3

(αem
4π

)2
m3B|λK∗ |

(
1−
q2

m2B

)2

×

{
16

3
ζ2⊥
q2

m2B

(
|C⊥9 |

2+
(
C⊥10
)2)
+
4

3
ζ2‖

(
|C‖9 |

2+
(
C‖10

)2)}
,

(56)

dAFB
dq2

=
1

dΓ/dq2

(∫ 1
0

d cos θ
d2Γ

dq2d cos θ
−

∫ 0
−1
d cos θ

d2Γ

dq2d cos θ

)

=
−6
(
q2/m2B

)
ζ2⊥Re

(
C⊥9
)
C⊥10

4 (q2/m2B) ζ
2
⊥

(
|C⊥9 |

2+(C⊥10)
2
)
+ ζ2‖

(
|C‖9 |

2+(C‖10)
2
) .
(57)

With the input parameters listed in Table 2, the decay
spectrum and the FB asymmetry are shown in Figs. 6
and 7, respectively. In our calculation we have dropped
the small isospin-breaking effects, which come from the an-
nihilation diagrams, and we take the spectator quark as
the down quark in (22) and (23). To estimate the residual
scale dependence, we vary the QCD matching scale µh by
a factor

√
2 around the default value µh =mb. Note that

the soft form factors ζ⊥,‖(q
2) defined in SCET are actually

scale dependent, which effect has been taken into account
in our error analysis.
Restricting ourselves to the integrated branching ratio

of B→K∗�+�− in the range 1 GeV2 ≤ q2 ≤ 7 GeV2, where
the SCET method should work, we obtain

7 GeV2∫
1 GeV2

dq2
dBr(B+→K∗+�+�−)

dq2

=
(
2.92+0.57−0.50|ζ‖

+0.30
−0.28|CKM

+0.18
−0.20

)
×10−7 . (58)

Here we have isolated the uncertainties from the soft form
factor ζ‖ and the CKM factor |V

∗
tsVtb|. The last error re-

flects the uncertainty due to the variation of the other
input parameters and the residual scale dependence. If
the smaller value for the longitudinal form factor ζ‖(0) =
0.32 is used, as shown in Fig. 6b, the central value of the
branching ratio is reduced to 2.11×10−7. For B0 decay,
the branching ratio is about 7% lower due to the lifetime
difference:

7 GeV2∫
1 GeV2

dq2
dBr(B0→K∗0�+�−)

dq2

=
(
2.72+0.53−0.47|ζ‖

+0.28
−0.26|CKM

+0.17
−0.19

)
×10−7 . (59)

To compare with the current experimental observa-
tions, it was proposed in [14] to consider the integrated
branching ratio over the range 4 GeV2 ≤ q2 ≤ 6 GeV2, for
which we get (0.92+0.21−0.19)×10

−7. This is smaller than the
number (1.2±0.4)×10−7 obtained in [14], which is mainly
due to the fact that the most recent LCSRs estimation [44]
favors smaller form factor AB→K

∗

0 . Experimentally one of
the Belle observations [4] of our interest is

8 GeV2∫
4 GeV2

dq2
dBr(B→K∗�+�−)

dq2

=
(
4.8+1.4−1.2|stat.±0.3|syst.±0.3|model

)
×10−7 , (60)

for which we predict (1.94+0.44−0.40)× 10
−7. This is smaller

than the published Belle data by a factor of about 2.5. But
at this stage, it is still too early to conclude that one should
change some theoretical input significantly to be consis-
tent with the experimental data. For instance, the BaBar
collaboration measures the total branching ratio of B→
K∗�+�− to be [3] (7.8+1.9−1.7± 1.2)× 10

−7, which is about
twice smaller than the Belle observation [4] (16.5+2.3−2.2±
0.9± 0.4)× 10−7. This implies that, if finally the total
branching ratio of B→K∗�+�− is found to be closer to
the BaBar result, the partially integrated branching ratio
over the range 4 GeV2 ≤ q2 ≤ 8 GeV2 could be lowered to
around 2.3×10−7, which is consistent with our estimate
(1.94+0.44−0.40)× 10

−7 within the stated errors. We look for-
ward to experimental analyses from BaBar and Belle based
on their high statistic data.
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Fig. 6. The differential branching ratio dB(B0→K∗0�+�−)/dq2 in the range 1 GeV2 ≤ q2 ≤ 8 GeV2. In the left plot, the solid line
denotes the theoretical prediction with the input parameters taken at their central values, while the gray area between two dashed
lines reflects the uncertainties from input parameters and scale dependence. In the right plot, the soft form factors are normalized
as ζ‖(0) = ζ⊥(0) = 0.32, while all the other parameters are chosen at their central values

Fig. 7. The differential spectrum of the forward–backward
asymmetry dAFB(B→K

∗�+�−)/dq2 in the range 1 GeV2 ≤
q2 ≤ 8 GeV2. Here the solid line denotes the theoretical predic-
tion with the input parameters taken at their central values,
while the gray band between two dashed lines reflects the un-
certainties from input parameters and scale dependence. The
dotted line represents the LO predictions, obtained by dropping
the O(αs) corrections

One of the most interesting observables in the decay
B→K∗�+�− is the location, q20, where the FB asymme-
try vanishes. It was first noticed in the context of form
factor models in [48] and later demonstrated in [12], using
the symmetries of the effective theory in the large-energy
limit, that the value of q20 is almost free of hadronic un-
certainties at leading order. From (57), it is easy to see
that the location of the vanishing FB asymmetry is de-
termined by Re(C⊥9 ) = 0. At the leading order, this leads
to the equation C9+C

eff
7 +Re(Y (q

2
0)) = 0. Including the

order αs corrections, our analysis estimates the zero-point
of the FB asymmetry to be

q20 =
(
4.07+0.16−0.13

)
GeV2 , (61)

of which the scale-related uncertainty is ∆(q20)scale =
+0.08
−0.05

GeV2 for the rangemb/2≤ µh ≤ 2mb together with the jet
function scale µl =

√
µh×0.5GeV, as used in the paper by

Beneke et al. [14]. Since no reliable estimates of the power

corrections in 1/mb are available, we should compare our
results with the one given in (74) of [14], also obtained
in the absence of 1/mb corrections: q

2
0 = (4.39

+0.38
−0.35) GeV

2.
Of this the largest single uncertainty (about ±0.25GeV2)
is attributed to the scale dependence. While our central
value for q20 is similar to theirs, with the differences re-
flecting the different input values, the scale dependence in
our analysis is significantly smaller than that of [14]. This
improved theoretical precision on q20 requires a detailed dis-
cussion on which we now concentrate in the rest of this
section.
As already stated in the introduction, the expressions

for the differential distributions in the decay B→K∗�+�−

derived here and in [14] are similar except for the defini-
tions of the soft form factors and the additional step of
the SCET logarithmic resummation incorporated in our
paper. This resummation has also been derived in the ex-
isting literature [26, 31, 49]. However, its effect on the scale
dependence of q20 has not been studied in sufficient de-
tail. With the SCET form factors ζ⊥(q

2, µ) and ζ‖(q
2, µ)

defined in (33) here, which are scale-dependent quanti-
ties, and neglecting the resummation effects consistently in
both the decays B→K∗�+�− and B→K∗γ, the scale un-
certainty is increased, with q20 = 4.12

+0.17
−0.07GeV

2. We draw
two inferences from this numerical study, (i) Incorporating
the SCET logarithmic resummation helps in the reduction
of scale dependence in q20. (ii) ∆(q

2
0)scale =

+0.17
−0.07 GeV

2, ob-
tained by dropping the resummation effects, is still signifi-
cantly smaller (by a factor 2) compared to the correspond-
ing uncertainty ∆(q20)scale =±0.25GeV

2 calculated in [14].
This difference, as argued below, is to be traced back to
the different definitions of the soft form factors used by
us for the SCET currents and the corresponding quanti-
ties employed by Beneke et al. [14] in the QCD factoriza-
tion approach. The results in [14] are, however, formally
equivalent to the so-called “physical form factor” (PFF)
scheme in SCET, as discussed subsequently by Beneke and
Yang [49]. Thus, the scale dependence of the distributions
in B→K∗�+�−, in particular of q20 , is related also to the
definitions (or scheme dependence) of the form factors in
effective theories. The PFF scheme is one such choice, but
this choice is by no means unique.
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Concentrating on the transverse form factor, relevant
for q20 of the FB asymmetry, in the PFF scheme, the corres-
ponding SCETI form factor ζ

P
⊥ (where we have now added

a superscript P for this scheme) is defined as

ζP⊥ ≡
mB

mB+mK∗
V , (62)

where V is one of the physical form factors in the decay
B→K∗�+�− in full QCD. In contrast, in our paper, the
soft SCET form factors are defined in (33). These two def-
initions can be related to each other by ζP⊥ = C̃3ζ⊥, where
the expression for the perturbative QCD coefficient C̃3 is
given below (C̃3 is called C

(A0)1
V in [23]). Since the decay

amplitude should be independent on how one defines the
soft form factors, one must have

C⊥P9 ζ
P
⊥ ≡ C

⊥
9 ζ⊥ =⇒C

⊥P
9 = C⊥9 /C̃3 . (63)

Since C̃3 = 1+O(αs), by expanding C⊥9 /C̃3 to orderαs, one
obtains

C⊥P9

=
C⊥9

1− (1− C̃3)
�
2π

αem

(
CA1 +

αem

2π
(1− C̃3)

(
2

ŝ
Ceff7 +C

eff
9

)

+
mB

4

fBφ
B
+⊗f

⊥
K∗φ

⊥
K∗ ⊗J⊥⊗C

B
1

ζP⊥

)

= Ceff9

+
2

ŝ
Ceff7

(
1+
CFαs

4π

[
4 ln
m2b
µ2
−4+

1− ŝ

ŝ
ln(1− ŝ)

])
+ . . . ,

(64)

which agrees with the expression for C⊥P9 in (40) of [14]
(called C9,⊥(q

2) there). We recall that to determine q20, we
solve the equation Re C⊥9 = 0, where now the quantity C

⊥
9

is defined as follows:

C⊥9 = C̃3(µ)C
eff
9 +

2

ŝ
Ceff7
mb

mb
C̃9(µ)+ . . . , (65)

with the QCD coefficients [16] (C̃9 is called C
(A0)2
T in [23])

C̃3 = 1−
αsCF

4π

[
2 ln2

(
µ

mb

)
− (4 ln(1− ŝ)−5) ln

(
µ

mb

)

+2 ln2(1− ŝ)+2Li2(ŝ)+
π2

12
+

(
1

ŝ
−3

)
ln(1− ŝ)+6

]
,

C̃9 = 1−
αsCF

4π

[
2 ln2

(
µ

mb

)
− (4 ln(1− ŝ)−7) ln

(
µ

mb

)

+2 ln2(1− ŝ)−2 ln(1− ŝ)+2Li2(ŝ)+
π2

12
+6

]
. (66)

The ellipsis above denotes the terms which are the same for
C⊥P9 and C⊥9 . The functions multiplying the effective Wil-
son coefficients Ceff9 and C

eff
7 appearing in C

⊥P
9 and C⊥9 in

(64) and (65), respectively, lead to a different scale depen-
dence for q20.

Our result for q20 using the SCET form factors has been
given above in (61) with the scale-dependent uncertainty
∆(q20)scale =

+0.08
−0.05 GeV

2. Note that we have considered in
a correlated way the scale dependence of ζ⊥(µ, q

2) in our
analysis. To illustrate this, we use the experimental data on
the branching ratio of B→K∗γ and the central values of
the other input parameters given in Table 2, which yields
the following scale dependence of the relevant form fac-
tor: ζ⊥(0, µ= 2mb) = 0.34 and ζ⊥(0, µ=mb/2) = 0.30. In
solving the equation Re[C⊥9 ] = 0, relevant for the zero-point
of the FB asymmetry in the decay B→K∗�+�−, we have
factored in the scale dependence of ζ⊥(µ, q

2). We do a simi-
lar numerical analysis of q20 in the PFF scheme, where
the corresponding form factor ζP⊥(q

2) is scale-independent,
and we incorporate the effect of the logarithmic resum-
mation in both the B→K∗γ and B→K∗�+�− decays.
Solving now the equation Re[C⊥P9 ] = 0, using the central

value of the soft form factor ζP⊥ (0) obtained from the
analysis of the B→K∗γ branching ratio, ζP⊥ (0) = 0.28,
and with all the other parameters fixed at their central
values given in Table 2, we find that in the PFF scheme
q20 = 3.98±0.18 GeV

2. Had we dropped the resummation
effect, we would get q20 = 4.03±0.22 GeV

2, where the scale
uncertainty ∆(q20)scale = ±0.22GeV

2, derived here in the
PFF scheme, is consistent with the number ∆(q20)scale =
±0.25GeV2 obtained in [14]. Therefore, we conclude that
the difference in the estimates of the scale dependence of
q20 here and in [14] is both due to the incorporation of the
SCET logarithmic resummation and the different (scheme-
dependent) definitions of the effective form factors for the
SCET currents and the ones used by Beneke et al. [14].
Using the SCET form factors defined in (33) in this paper,
we find that the scale-related uncertainty ∆(q20)scale is re-
duced compared to the PFF scheme of Beneke et al. [14].
One expects that such scheme-dependent differences will
become less marked after incorporating the O(α2s ) effects
in the decay distributions for B→K∗�+�−. Our compar-
ative analysis hints at rather large O(α2s ) corrections to
q20 in the PFF scheme and a moderate correction in the
SCET analysis carried out by us in this paper. Since the
value of q20 offers a precision test of the SM, and by that
token it provides a window on the possible beyond-the-SM
physics effects; it is mandatory to undertake an O(α2s ) im-
provement of the current theory of B→K∗�+�− decay. As
power corrections in 1/mb have not been considered here,
although they are probably comparable to the O(αs) cor-
rections as argued in a model-dependent estimate of the
1/mb corrections by Beneke et al. [14], it also remains to
be seen how a model-independent calculation of the same
affects the numerical value of q20.

4 Summary

In this paper, we have examined the rare B decay chan-
nel B→K∗�+�− in the framework of SCET, where the
factorization formula holds to all orders in αs and lead-
ing order in 1/mb. Making use of the existing literature,
we work with the relevant effective operators in SCET,
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and the corresponding matching procedures are discussed
in detail. The logarithms related to the different scales
µh =mb and µl =

√
mbΛh are resummed by solving numer-

ically the renormalization-group equation in SCET. We
then give explicit expressions for the differential distri-
butions in q2 for the decay B→ K∗�+�− including the
O(αs) corrections. In the phenomenological analysis, we
first discuss the input parameters, especially how to ex-
tract the soft form factors ζ⊥,‖(q

2) from the full QCD
form factors, and also the constraints on ζ⊥(0) from the
experimental data on the B → K∗γ decay. Using the
q2-dependence of the form factors from the LCSRs and
the normalization ζ⊥(0) = 0.32± 0.02 and ζ‖(0) = 0.40±
0.05, we work out the differential branching ratio and the
forward–backward asymmetry as a function of the dilepton
invariant mass. In the region 1 GeV2 ≤ q2 ≤ 7 GeV2, where
the perturbative method should be reliable, our analysis
yields

7 GeV2∫
1 GeV2

dq2
dBr(B+→K∗+�+�−)

dq2
=
(
2.92+0.67−0.61

)
×10−7 ,

(67)

which can be compared with the B factory measurements
in the near future. The largest uncertainty in the branch-
ing ratio is due to the imprecise knowledge of ζ‖(q

2).
We have illustrated this by using the value ζ‖(0) = 0.32,
which reduces the central value of the branching ratio
to 2.11×10−7. We point out that precisely measured q2-
distributions in B→K∗�+�− and B→ ρ�ν� would greatly
reduce the form factor related uncertainties in the differen-
tial branching ratios. The FBA is less dependent on the soft
form factors, and the residual parametric dependencies are
worked out. We estimate the zero-point of the FBA to be
q20 = (4.07

+0.16
−0.13) GeV

2. The stability of this result against
O(α2s ) and 1/mb corrections should be investigated in the
future.
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